fiziks

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

6. The Theory of Vector Fields

If the curl of a vector field (\vec{F}) vanishes (everywhere), then \vec{F} can be written as the

gradient of a scalar potential (V): $\vec{\nabla} \times \vec{F} = 0 \Leftrightarrow \vec{F} = -\vec{\nabla}V$

(The minus sign is purely conventional.)

Theorem 1: Curl-less (or "irrotational") fields. The following conditions are equivalent

(that is, \vec{F} satisfies one if and only if it satisfies all the others):

- (a) $\vec{\nabla} \times \vec{F} = 0$ everywhere.
- (b) $\int_{-\infty}^{b} \vec{F} \cdot d\vec{l}$ is independent of path, for any given end points.
- (c) $\oint \vec{F} \cdot d\vec{l} = 0$ for any closed loop.
- (d) \vec{F} is the gradient of some scalar, $\vec{F} = -\vec{\nabla}V$.

The scalar potential is not unique-any constant can be added to V with impunity, since this will not affect its gradient.

If the divergence of a vector field (\vec{F}) vanishes (everywhere), then \vec{F} can be expressed as the curl of a vector potential (\vec{A}) :

$$\overrightarrow{\nabla}\cdot\overrightarrow{F}=0 \Longleftrightarrow \overrightarrow{F}=\overrightarrow{\nabla}\times\overrightarrow{A}$$

That's the main conclusion of the following theorem:

Theorem 2: Divergence-less (or "solenoidal") fields. The following conditions are equivalent:

(a) $\vec{\nabla} \cdot \vec{F} = 0$ everywhere.

(b) $\int \vec{F} \cdot d\vec{a}$ is independent of surface, for any given boundary line.

- (c) $\oint \vec{F} \cdot d\vec{a} = 0$ for any closed surface.
- (d) \vec{F} is the curl of some vector, $\vec{F} = \vec{\nabla} \times \vec{A}$.

The vector potential is not unique-the gradient of any scalar function can be added to \overline{A} without affecting the curl, since the curl of a gradient is zero.