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6. The Theory of Vector Fields 

If the curl of a vector field ( F ) vanishes (everywhere), then F  can be written as the 

gradient of a scalar potential (V):              VFF  0  

(The minus sign is purely conventional.)  

Theorem 1: Curl-less (or "irrotational") fields. The following conditions are equivalent 

(that is, F  satisfies one if and only if it satisfies all the others): 

 (a) 0 F  everywhere. 

 (b)  
b

a

ldF  is independent of path, for any given end points. 

 (c)   0ldF  for any closed loop. 

 (d) F  is the gradient of some scalar, F V 
 

. 

The scalar potential is not unique-any constant can be added to V with impunity, since 

this will not affect its gradient. 

If the divergence of a vector field ( F ) vanishes (everywhere), then F  can be expressed 

as the curl of a vector potential  A : 

                    AFF  0  

That’s the main conclusion of the following theorem: 

Theorem 2: Divergence-less (or “solenoidal”) fields. The following conditions are 

equivalent: 

(a) 0 F  everywhere. 

(b)   adF  is independent of surface, for any given boundary line. 

(c)   0adF  for any closed surface. 

(d) F  is the curl of some vector, AF  . 

The vector potential is not unique-the gradient of any scalar function can be added to A  

without affecting the curl, since the curl of a gradient is zero.  
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